
COURSE HANDOUT

Course Code ACSC13

Course Name Design and Analysis of Algorithms

Class / Semester IV SEM

Section A-SECTION

Name of the Department CSE-CYBER SECURITY

Employee ID IARE11023

Employee Name Dr K RAJENDRA PRASAD

Topic Covered Complexity of an Algorithm

Course Outcome/s
 Analyse the complexity of algorithm with time and space requirement
values.

Handout Number 6

Date 27 March, 2023

Content about topic covered: Complexity of an Algorithm

Complexity of an Algorithm:

Explanation about time and space complexity with examples.

Space complexity: The space complexity of an algorithm is the amount of memory it needs to run to
completion.

The space needed by each of these algorithms is the sum of the following components.

1. A fixed component that is unaffected by the features (such as quantity and size) of the inputs and
outputs. This section normally consists of the instruction space (also known as the space for the code),
the space for simple variables and constants, and so on

2. A variable part that consists of the recursion stack space (to the extent that this space depends on the
instance characteristics), the space needed by referenced variables (to the extent that this depends on
instance characteristics), and the space needed by component variables, the size of which depends on
the specific problem instance being solved.

So, The space requirement S(P)of any algorithm P may therefore be written as

S(P)= C + Sp(instance characteristics),where C is a constant

Eg 1.

Algorithm abc(a, b, c)

{

return a + b + b * c + (a + b - c)/(a + b) + 4.0;

}

The particular values of a, b, and c define the problem instance. We can see that the space
required by abc is independent of the instance characteristics by making the assumption that
one word is sufficient to hold the values of each of a, b, and c as well as the result.

Sp(instance characteristics) = 0.

Eg 2. Algorithm Sum(a,n)

 {

 s:=0.0;

for i :=1to n do

s :=s+ a[i];

return s;

}

The amount of elements that must be summed, or n, defines the issue instances. Given that it
is an integer, n requires one word of space. The amount of space required by variables of the
type array of floating point numbers is the same as the amount required by a. Since a needs to
be substantial enough to accommodate the n elements to be added, this is at least n words.

Eg 3. Algorithm RSum(a,n)

 {

 if (n ≤ 0) then return 0.0;

else return RSum (a,n-1)+ a[n];

 }

The formal parameters, local variables, and return address are all included in the recursion
stack area. Suppose that all that is needed to store the return address is a single word. A
minimum of three words are needed for each call to RSum (containing storage for the n-values,
the return address, and a pointer to a[]). Recursion stack space is 3(n+1) because the depth of
recursion is n + 1.

Time complexity:

The time complexity of an algorithm is the amount of computer time it needs to run to
completion.

The time T(P) taken by a program P is the sum of the compile time and the run (or
execution)time. The compile time does not depend on the instance characteristics.

Therefore, the time complexity of an algorithm is determined by the number of steps it requires
to compute the function for which it was constructed.

There are two methods we can figure out how many steps a program needs to take in order to
solve a specific problem.

1. Introduction of global variable called count.

2. To build a table in which we list the total number of steps contributed by each statement.

Examples

1. Count method:

Eg 1. Algorithm abc(a, b, c)

{

return a + b + b * c + (a + b - c)/(a + b) + 4.0;

count = count +1;

}

The time complexity is O(1).

2. Table Method

An algorithm's step count is computed by first calculating the total number of times (frequency) that
each statement is executed overall, as well as the number of steps required for its execution (s/e). The
s/e of a statement is the amount by which the count differs from the original value as a result of the
statement's execution. These two numbers are multiplied to determine the contribution of each statement
as a whole. The total number of steps for the entire algorithm can be found by totalling the from each
statement.

